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Abstract 

Noncognitive skills such as motivation and self-regulation, are partly heritable and predict academic 

achievement beyond cognitive skills. However, how the relationship between noncognitive skills and 

academic achievement changes over development is unclear. The current study examined how 

cognitive and noncognitive skills contribute to academic achievement from ages 7 to 16 in a sample 

of over 10,000 children from England and Wales. Noncognitive skills were increasingly predictive of 

academic achievement across development. Twin and polygenic scores analyses found that the 

contribution of noncognitive genetics to academic achievement became stronger over the school 

years. Results from within-family analyses indicated that associations with noncognitive genetics 

could not simply be attributed to confounding by environmental differences between nuclear families 

and are consistent with a possible role for evocative/active gene-environment correlations. By 

studying genetic effects through a developmental lens, we provide novel insights into the role of 

noncognitive skills in academic development. 
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Introduction  

Children who are emotionally stable, motivated, and capable of regulating their attention and 

impulses do better in school, independent of their level of cognitive ability1–7. These important 

socioemotional characteristics have been broadly described as noncognitive skills8. “Noncognitive” 

is an imperfect term that primarily serves to differentiate these characteristics from what they are not 

– performance on standardized tests of cognitive ability. The panoply of noncognitive skills that 

predict better educational outcomes can be organized into three partly overlapping domains: 

motivational factors, self-regulatory strategies, and personality traits9.  

Twin research has shown that genetic differences between people contribute to their differences in 

noncognitive skills. Most domains of noncognitive skills, including academic motivation10,11, self-

regulation12 and personality,13 are moderately heritable (~30-50%). In addition, twin studies have 

found evidence that noncognitive skills are genetically correlated with academic achievement14,15. 

That is, some of the same genetic differences that are associated with variation in academic 

achievement are also associated with noncognitive skills. 

DNA-based methods have confirmed genetic links between noncognitive skills and academic 

performance. Genome-wide association studies (GWAS) of educational attainment (i.e., years of 

formal education completed) have identified genetic variants that are correlated with completing 

formal education16,17. A polygenic score (PGS) constructed from these GWAS results predicts higher 

levels of self-control18, more adaptive personality traits (higher conscientiousness, agreeableness, 

and openness to experience), and greater academic motivation19. Additionally, previous GWAS work 

has identified associations between DNA variants and educational attainment that were independent 

of cognitive test performance, essentially performing a GWAS of noncognitive skills20. The genetics 

of noncognitive skills were found to be related to conscientiousness, openness to experience, delay 

of gratification, and health-risk behaviours20.  

The current study uses both twin and DNA-based methods to expand our understanding of the role of 

noncognitive skills in academic development. We address four key questions (Figure 1). First, does 

the contribution of noncognitive skills to academic achievement change over development (from age 

7 to age 16)? Second, do genetic predispositions to noncognitive skills vary in their contributions to 

academic achievement across development? Third, to what extent are these associations accounted 

for by between-family processes, such as environmental influences shared between individuals in a 

family? Fourth, do genetic contributions to academic achievement vary by socioeconomic status? 

First, we investigated the associations between noncognitive skills and academic achievement across 

development. Longitudinal studies that have examined the contribution of noncognitive skills to 

academic achievement remain scarce and have focused on a few specific measures over relatively 

short time frames21. Here, we analyze a comprehensive battery of developmental data from over 

10,000 children born in England and Wales who were followed across compulsory education (Figure 

1, left panel). Moreover, we simultaneously consider the role of cognitive skills. Past research has 

highlighted how skills that are broadly considered noncognitive, such as self-control, rely on 

cognitive competencies.22 Therefore, it is important to consider the role of developing cognitive 
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skills when assessing the relationship between noncognitive skills and academic achievement over 

time. 

Second, we investigated whether genetic dispositions towards noncognitive skills become 

increasingly important for academic achievement across development. Twin studies focusing on 

specific moments in childhood23 or adolescence24 have found that heritable variation in noncognitive 

skills, such as motivation and self-regulation, contribute to academic achievement beyond cognitive 

skills25. However, to our knowledge, no study to date has examined this relationship across 

development. We triangulate evidence across different methods, including twin and PGS analyses, to 

investigate the contribution of genetic factors associated with cognitive and noncognitive skills to 

academic achievement.  

Third, with a sibling-difference design, we examined to what extent the developmental relationship 

between genetic propensity for noncognitive skills and academic achievement was accounted for by 

family-wide environmental processes. Sibling differences in genotypes are randomized by meiosis, 

such that siblings have an equal probability of inheriting any given parental allele. Therefore, within-

sibling pair PGS associations are thought to be less confounded by environmental differences 

between nuclear families, including population stratification and indirect genetic effects 26. Indirect 

genetic effects refer to the effects of the non-transmitted parental genotypes on the offspring 

phenotype, potentially reflecting rearing environments, although they can also capture broader 

demographic phenomena, such as assortative mating27.  

Conversely, differences between siblings in PGS associations are often referred to as “direct” genetic 

effects28,29 in that they are consistent with a causal effect of genetic variants within an individual on 

their phenotype. However, even direct genetic effects involve mediation through environmental 

processes. For example, children with a greater motivation towards academic achievement might 

actively select, modify, and create environmental experiences that foster further achievement, such 

as deciding to take advanced classes29. That is, genetic differences between children can result in 

differential exposure to learning environments, which, in turn, can affect their academic 

achievement, 30. These active/evocative gene-environment correlations (rGE) amplify the effects of 

genetic difference and are one theorized mechanism for increasing genetic effects over 

development31,32. 

Fourth, we explored whether genetic contributions to academic achievement varied by 

socioeconomic status. Genetic and environmental processes might interact such that the effects of 

environmental experiences on a trait might be partly dependent on genetic effects and vice versa.33,34  

Studies that examined this possibility have focused on the role of socioeconomic disadvantage across 

a broad range of contexts, including family socioeconomic status35,36 and the school 

environment37,38. We explore whether the cognitive and noncognitive PGS prediction of academic 

achievement differs at different levels of socioeconomic disadvantage across development.  

Under a developmental lens, these analyses address four core research questions providing a detailed 

account of the processes through which cognitive and noncognitive skills are linked to individual 

differences in academic achievement. We triangulated evidence across multiple genetic methods. 
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Since each method is subject to different and unrelated assumptions and limitations, triangulating 

multiple methods provides a powerful tool to increase the reliability of our results.  

Results 

Noncognitive skills predict academic achievement beyond cognitive skills with increasingly strong 

associations across development. 

Parents, teachers, and twins rated different noncognitive skills at different ages. Based on extant 

literature and measures availability, we focused on two broad dimensions of noncognitive skills, 

which were modeled as latent factors (Figure 1): 1) education-specific noncognitive skills, including 

measures of academic interest, attitudes towards learning, and academic self-efficacy, and 2) 

domain-general self-regulation skills, including measures of behavioural and emotional regulation 

not necessarily related to the school context (Figure 1 and Methods). Here, we report analyses of 

these two dimensions. Analyses of individual measures are reported in the Supplementary Material 

(Supplementary Note 1, Supplementary Figure 1, and Supplementary Tables 1 and 2).  

Latent factors of education-specific noncognitive skills and domain-general self-regulation skills 

(Supplementary Tables 3 and 4) were correlated positively with academic achievement at all 

developmental stages. Effect sizes differed by rater and developmental stage and tended to increase 

with age. For example, the association between self-rated education-specific noncognitive skills and 

academic achievement increased from r = 0.10 (95% CIs = 0.07; 0.14) at age 9, to r = 0.41 (95% CIs 

= 0.38; 0.44) at age 12, to r = 0.51 (95% CIs = 0.48; 0.55) at age 16 (see Supplementary Note1, 

Supplementary Figure 2 and Supplementary Table 5). Latent noncognitive factors were also 

modestly correlated with latent factors of general cognitive ability (Supplementary Table 6) at the 

same age (Supplementary Table 7).  

We examined whether general cognitive ability could account for the associations between 

noncognitive skills and academic achievement. Multiple regression analyses showed that both 

noncognitive factors were substantially and significantly associated with academic achievement 

beyond cognitive skills at every stage of compulsory education (Figure 2A and Supplementary Table 

8). The relative contribution of noncognitive skills to academic achievement increased 

developmentally, particularly when considering self-reported measures. For self-reported education-

specific noncognitive skills, the effect size of the relative prediction of achievement increased from 

𝛽 = .10 (SE = 0.02) at age 9 (effect size for cognitive ability: 𝛽 = .46, SE = 0.01) to 𝛽 = .28 (SE = 

0.02) at age 12 (effect size for cognitive ability: 𝛽 = .36, SE = 0.02) to 𝛽 = .58 (SE = 0.02) at age 16 

(effect size for cognitive ability: 𝛽 = .39, SE = 0.01). A developmental increase was also observed 

for self-reported measures of domain-general self-regulation skills, for which the predictive power 

increased from 𝛽 = .11 (SE = 0.02) at age 9 to 𝛽= .21 (SE = 0.01) at age 16, after accounting for 

general cognitive ability (Supplementary Table 8). 
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Figure 1. A visual summary of the measures, research questions and methods adopted in the present study.  Left 

panel: We used factor analysis to capture individual differences in two broad dimensions of noncognitive skills: 

education-specific noncognitive skills (including measures such as academic interest, academic self-efficacy and value 

attributed to learning), and domain-general self-regulation skills (including measures of behavioural and emotional 

regulation not necessarily related to the school context). We also created latent measures of general cognitive ability 

from verbal and nonverbal cognitive tests at four ages. Academic achievement measures included teacher ratings of 

academic performance based on the national curriculum at ages 7, 9 and 12 and exam scores at age 16 (see Methods for a 

detailed description). Centre and right panels: A summary of the methodologies adopted to address each of the four 

core research questions in the study. We addressed the first research question (Q1) by conducting a series of multiple 

regressions to investigate changes in the developmental contribution of noncognitive skills to academic achievement 

beyond cognitive skills. We addressed the second research question (Q2) using multiple genetic methods. First (A), we 

conducted trivariate Cholesky decompositions using twin data. Second (B), we created a new GWAS of noncognitive 

skills by extending the GWAS-by-subtraction (Demange et al., 2021) approach with a set of GWAS for specific 

cognitive tasks and SES-relevant traits and examined developmental changes in the cognitive (Cog) and noncognitive 

(NonCog) polygenic score prediction of academic achievement from age 7 to 16. We addressed our third research 

question (Q3) by modelling Cog (blue) and NonCog (red) PGS effects within a sibling difference design, therefore 

separating within-family from between-family effects. We investigated our fourth research question (Q4) fitting 

multivariable models including the effects of the Cog/NonCog PGS, family socioeconomic status, and their two-way 

interaction. 

A. Education-specific noncognitive skills
Rated by parents (P), teachers (T) and self (S) 

Measures

P/T/S

Academic interest

Value of learning

Academic self-efficacy

…

    Age 9 (P, T, S)

    Age 12 (S)

    Age 16 (S)

P/T/S

B. Domain-general self-regulation

Emotional regulation

Behavioral regulation

    Age 7 (P)

    Age 9 (P, T, S)

    Age 12 (P, T, S)

    Age 16 (S)

g

C. General cognitive ability (g)

Verbal  reasoning

Nonverbal reasoning

    Age 7 (4 tests)

    Age 9 (4 tests)

    Age 12 (4 tests)

    Age 16 (2 tests)

D. Academic achievement 

English

Maths

Ach total
Teacher-reported

    Age 7

    Age 9 

    Age 12 

GCSE score

    Age 16

Research Questions

Ach

g

NCS

Q1. Does the noncognitive skills (NCS) 

prediction of academic achievement 

increase over development?   

Q2. Do genetic effects on noncognitive 

skills become increasingly important for 

academic achievement over development? 

Age 7

Age 9 

Age 12

Age 16

A. Twin method

MZ twins DZ twins

Achg

A A A

NCS

B. Molecular genetics methods

Step 1. New GWAS of NCS using 

Genomic SEM

Step 2. Cognitive and noncognitive 

polygenic score (PGS) prediction of 

academic achievement over development 

Cog
Non

Cog

0

Achievement  7

Achievement  9

Achievement  12

Achievement  16

DZ twins

Between & within-sibling PGS predictions

Ach 7

Ach  9

Ach  12

Ach  16

Between Within

Q4. Do PGS predictions of academic 

achievement differ at different levels of 

socioeconomic disadvantage? 

Ach

Age 7

Age 9 

Age 12

Age 16

Q3. Are developmental changes in 

genetic effects on achievement evident 

when comparing siblings?
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Specific genetic associations between noncognitive skills and academic achievement persist after 

accounting for cognitive skills and increase in magnitude across development. 

Applying twin designs (Methods), we found that the heritability (i.e., the extent to which observed 

differences in a trait are accounted for by genetic differences) of noncognitive skills differed 

significantly across raters and developmental stages (Supplementary Note 2, Supplementary Table 9, 

and Supplementary Figures 3-7). The heritabilities of latent noncognitive factors, which exclude 

error of measurement, ranged between 70% (95% CIs = 0.63; 0.77) for self-reported education-

specific skills at age 9 and 93% (95% CIs = 0.91; 0.96) for parent-reported education-specific 

noncognitive skills at age 9 (Supplementary Note 2, Supplementary Tables 10-11 and Supplementary 

Figure 8). These substantial heritability estimates are consistent with previous studies that 

investigated the heritability of latent dimensions of noncognitive skills11 and of a general factor of 

psychopathology across different raters40. The correlation between noncognitive measures and 

academic achievement was mostly accounted for by genetic factors and, to a lesser extent, by 

nonshared environmental factors (Supplementary Note 2 and Supplementary Figure 8).  

We then investigated whether the observed genetic associations between latent noncognitive factors 

and academic achievement could be accounted for by genetic factors associated with cognitive skills. 

We investigated this question with a series of trivariate Cholesky decompositions (Methods) the 

results of which are presented in Figure 2B, which reports standardized squared path estimates, and 

Supplementary Tables 12 and 13, which report standardized path estimates and 95% confidence 

intervals. The Cholesky approach, similar to hierarchical regression, parses the genetic and 

environmental variation in each trait into that which is accounted for by traits that have been 

previously entered into the model and the variance which is unique to a newly entered trait.  

Each bar in Figure 2B is the outcome of a different trivariate Cholesky decomposition of the 

heritability of academic achievement (the total length of the bar) into genetic effects associated with 

noncognitive skills after controlling for genetic effects associated with cognitive skills at the same 

age. We found that genetic effects associated with cognitive skills accounted for between 21% and 

36% of the total variance in academic achievement, as indicated by standardized paths ranging 

between 0.46 (95% CIs = 0.37; 0.54) and 0.60 (95% CIs = 0.50; 0.70). Genetic effects associated 

with noncognitive skills, independent of cognitive skills, accounted for between 0.1% and 32.5% of 

the variance in academic achievement, independent of cognitive skills, standardized paths ranged 

between 0.01 (95% CIs = -0.16; 0.17) for self-reported self-regulation at age 9 and 0.57 (95%CIs = 

0.48; 0.67) for teacher reported education-specific noncognitive skills at age 9. Lastly, we found that 

between 5% and 37% of the variance in academic achievement was independent of genetic effects 

associated with cognitive and noncognitive skills; Standardized paths ranged between 0.23 (95%CIs 

= 0.13; 0.33) and 0.61 (0.52; 0.70).   

The top three rows of Figure 2B illustrate the developmental increase in how the genetics of self-

reported noncognitive skills contribute to the genetics of academic achievement. Focusing on 

education-specific noncognitive skills, we found that standardized squared path estimates increased 

from 1% of the total variance in academic achievement at age 9 (standardized path estimate = 0.01 

[95% CIs = -0.16; 0.17]) to 4% at age 12 (standardized path estimate = 0.16 [95% CIs = 0.02; 0.30]) 

and 12% at age 16 (standardized path estimate = 0.35 [95% CIs = 0.26; 0.44]) (Supplementary 
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Tables 12 and 13). This increased contribution beyond cognitive skills was also observed for 

domain-general self-regulation. See Supplementary Figure 9 for the full models' results which 

include shared and nonshared environmental estimates.  

 

Figure 2. Associations between noncognitive skills and academic achievement accounting for general cognitive 

ability. (Panel A). Associations between latent factors of noncognitive skills and academic achievement at ages 7, 9, 12 

and 16, after accounting for general cognitive ability at the same age using multiple regression. Each bar indicates the 

effect size of standardized regression coefficients, and the error bars indicate the 95% confidence intervals around the 

estimates. The left panel shows the associations for latent measures of education-specific noncognitive skills (NCS), 

while the right panel the associations for latent dimensions of domain-general self-regulation skills. The figure is further 

divided into self-rated (top panel), parent-rated (middle panel) and teacher-rated (bottom panel) measures. (Panel B). 

Each bar represents genetic effects (standardized and squared path estimates) on academic achievement over 

development and includes three shadings. The lighter (yellow) shadings indicate the proportion of genetic variance in 

academic achievement that can be attributed to genetic variance in cognitive skills (Cog). The orange shadings indicate 

the proportion of genetic variance in academic achievement that can be attributed to genetic variance in noncognitive 

skills, independent of the genetics of cognitive skills (Noncog – Cog). The red shadings indicate genetic effects on 

academic achievement independent of the genetics of cognitive and noncognitive skills (Achievement specific). Results 

are further divided into self-rated (top panel), parent-rated (middle panel) and teacher-rated (bottom panel) measures. 

Standardized paths and 95% Confidence intervals for all estimates are presented in Supplementary Tables 12 and 13. 

 

A new PGS of noncognitive skills calculated by extending the GWAS-by-subtraction approach.  

In order to obtain a PGS for use in subsequent analyses, we first extended previous work using the 

GWAS-by-subtraction approach to identify genetic variants associated with non-cognitive skills.20 

Previous GWAS-by-subtraction work leveraged Genomic structural equation modelling (SEM)41 and 
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the two genome-wide association studies (GWAS) of educational attainment and cognitive 

performance to separate the genetic variance in educational attainment into a cognitive component 

and a residual, noncognitive component. We extended this model in two directions. First, we 

extended the latent cognitive factor by including GWAS summary statistics from additional 

cognitive measures (episodic memory; processing speed, executive functions, and reaction time).42 

Second, we included other socioeconomic attainment variables, including Townsend Deprivation 

and Income,43 in addition to educational attainment17. The resulting noncognitive factor can therefore 

be defined as genetic variation shared by educational attainment, income, and neighborhood 

deprivation that is independent of all measured cognitive abilities. Akin to Demange et al. 2021, we 

then fitted a Cholesky model (Methods) where indicators of the noncognitive latent factor 

(henceforth NonCog) were regressed on the cognitive latent factor (henceforth Cog; Figure 3A and 

Supplementary Table 14).  

The newly-created cognitive and noncognitive factors correlated strongly with those obtained from 

Demange et al.20 (Supplementary Table 15). The genetic correlation was 0.96 for the cognitive 

factors and 0.93 for the noncognitive factors. The genetic correlation between Cog and NonCog was 

rg = 0.15. Supplementary Figure 10 shows the genetic correlations between the newly created Cog 

and NonCog genetics and 18 psychiatric, personality and socio-economic traits, which we compared 

to the genetic correlations obtained by Demange et al.20. The pattern of associations was largely 

consistent across the two models. However, in some instances, results diverged. Specifically, with 

respect to psychiatric traits, autism, anorexia, and ADHD, a larger gap was observed between the 

cognitive and noncognitive factors, as compared to Demange et al., where differences in the 

correlations were less pronounced or absent. As expected, the results differed most for 

socioeconomic traits, with stronger correlations for NonCog than Cog with longevity (r = 0.52, SE = 

0.04, p = 1.04E-45 Vs. r = 0.35, SE =0.03 p = 6.40E-31), neighbourhood deprivation (r = -0.66, SE = 

0.04, p = 3.85E-54 Vs. r = -0.28, SE = 0.04, p = 5.98E-12), and educational attainment (r = 0.83, SE 

= 0.01, p = 0.00E+00 Vs. r = 0.65, SE = 0.01, p = 0.00E+00; Supplementary Figure 10 and 

Supplementary Table 15).  

The noncognitive polygenic prediction of academic achievement increases over development. 

We calculated polygenic scores (PGS) for Cog and NonCog and examined their association with 

cognitive, noncognitive and academic phenotypes over development. Polygenic scores leverage 

findings from GWAS and aggregate single-nucleotide polymorphisms (SNPs) across the genome 

into a single composite index summarizing genetic influence on a target trait. We calculated PGS as 

the sum of SNPs at all loci weighted by the effect size of their association (see Methods). We first 

investigated whether and to what extent Cog and NonCog PGS predicted individual differences in 

noncognitive skills across development by modelling both PGSs in a multiple regression model 

(Methods). In line with our previously obtained results showing a moderate association between 

cognitive and noncognitive traits, we found that the Cog PGS significantly predicted variation in 

noncognitive skills across development, with standardized effect sizes ranging between ß = 0.04, SE 

= 0.02 and ß = 0.22, SE = 0.02 (Figure S11 and Supplementary Table 16). The NonCog PGS, 

independent of the cognitive PGS, predicted observed variation in noncognitive skills at all 

developmental stages. Associations were small at earlier ages (e.g., ß = 0.07, SE = 0.02, p(corrected) = 

1.93E-03) for parent-reported education-specific noncognitive skills at 9, and ß = 0.10, SE = 0.01, 

p(corrected) = 2.24E-11 for parent-reported self-regulation at 7) but they increased developmentally, 
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particularly for self-reported education-specific noncognitive measures (ß = 0.16, SE = 0.02, 

p(corrected) = 8.30E-17 at age 16). The only exception was observed for self-reported education-

specific noncognitive skills at age 9, for which the prediction was negative (ß = -0.03, SE = 0.02) 

and did not reach significance after accounting for multiple testing (Supplementary Table 16). In 

Supplementary Note 3a, we show that this increase in prediction was significant overtime for the 

NonCog PGS, but not for the Cog PGS. Furthermore, we show that this increase is not explained by 

the NonCog PGS capturing more cognitive variance later in adolescence (Supplementary note 3b), or 

by socio-economic status (Supplementary note 3c). 

Cog and NonCog PGSs predicted variation in general cognitive ability, verbal ability, and nonverbal 

ability at all developmental stages. As expected, the Cog PGS prediction of cognitive phenotypes 

was substantially stronger than the NonCog prediction, with estimates ranging between ß = 0.19, SE 

= 0.1, p(corrected) = 3.77E-42and ß = 0.27, SE = 0.02, p(corrected) = 1.04E-52 for the Cog PGS and 

between ß = 0.10,SE = 0.02 p(corrected) = 4.41E-10 and ß = 0.18, SE = 0.02, p(corrected) 5.51E-21 for 

the NonCog PGS (Supplementary Table 16).  

Next, we considered the effects of the Cog and NonCog PGSs on academic achievement over 

development. We detected associations between the Cog PGS and achievement as early as age 7 (ß 

=0.24, SE = 0.01, p(corrected) = 3.68E-86), these associations remained largely consistent across 

development (ß = 0.26, se = 0.01, p(corrected) = 2.71E-126 at age 16). Although we observed weaker 

effects for the NonCog PGS in early childhood (ß =0.10, SE = 0.01, p(corrected) = 8.12E-15) as 

compared to the Cog PGS, these increased across development and reached effects comparable to 

those of the Cog PGS at age 16 (ß =0.22, SE = 0.01, p(corrected) = 1.85E-84; Figure 3B and 

Supplementary Table 16). The same pattern of associations was observed also when considering 

achievement in English and mathematics, separately (Supplementary Table 16). This observed 

increase in the NonCog PGS prediction of academic achievement over development is consistent 

with transactional models of gene-environment correlation, driven by noncognitive genetics. These 

PGS predictions were in line with those obtained from the PGSs created using the GWAS-by-

subtraction method published by Demange et al. (Supplementary Table 17).  
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Figure 3. Contribution of noncognitive genetics to academic development: genomic analyses and gene-environment 

interplay. (Panel A.) Path diagram for the extension of the GWAS-by-subtraction model implemented in genomic 

structural equation model. In addition, GWAS summary statistics for cognitive performance (CP) and educational 

attainment (EA), summary statistics of memory (ME), symbol digit (SD), trail making (TM), and reaction time (RT) 

GWASs loaded on the cognitive (Cog) latent factor while GWAS summary statistics for income (IN) and deprivation 

(DE) loaded on the noncognitive (NonCog) latent factor, in addition to EA (Methods). (Panel B.) Cognitive and 

noncognitive polygenic score (PGS) prediction of academic achievement at ages 7,9, 12 and 16. (Panel C.) Results of 

polygenic scores analyses after partitioning the effects of Cog and NonCog into between and within family factors. 

(Panel D.) Cognitive (Cog) and noncognitive (Noncog) PGS prediction of academic achievement at the end of 

compulsory education (age 16), plotted at different levels of family socioeconomic status (SES).  

Differences between siblings in the polygenic prediction of academic achievement across 

development  

Given our observation of an increase in the NonCog PGS contributions to academic achievement 

across development, we extended our preregistered analyses (https://osf.io/m5f7j/) to examine 

whether and to what extent this increase was accounted for by family-wide processes. Specifically, 

using a sibling difference design we separated the NonCog PGS contributions into within-family 

effects, indexing direct genetic effects, from between-family effects, which may include indirect 

genetic effects and demographic confounding (Methods). We examined within and between family 

contributions of the Cog and NonCog PGS on academic achievement from age 7 to 16.  
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Two main findings emerged from this analysis (Figure 3C). First, we observed that the effect sizes 

for the direct effects of NonCog were about half as the size of the population-level associations 

(Supplementary Table 18). Similarly, the prediction from the Cog PGS was reduced by over one-

third, consistent with previous evidence44. Second, while the Cog direct and indirect genetic effects 

did not vary substantially over the developmental period considered  (from ß = 0.20, SE = 0.02, p = 

2.75E-20 to ß = 0.23, SE = 0.02, p = 4.12E-32), NonCog effects showed an increase from age 7 to 

age 16 (from ß = 0.06, SE = 0.02, p = 0.005 to ß = 0.15, SE = 0.02, p = 1.39E-14; Figure 3C, and 

Supplementary Table 18). These results suggested that the developmental increase in the between 

family PGS prediction was mostly driven by noncognitive rather than cognitive skills. In addition, 

this  developmental increase could be observed for both indirect and direct genetic effects. We 

conducted sensitivity analyses, and replicated the results, with the PGSs constructed using the 

method published by Demange et al. (Supplementary Table 18b). 

Does socioeconomic status modify the association between Cog/NonCog PGS and educational 

outcomes across development?  

Lastly, we extended our preregistered analyses to test whether socio-economic status (SES) could 

explain or modify the observed pattern of developmental associations between PGS and academic 

achievement. We fitted multivariable models at each developmental stage including Cog/NonCog 

PGS effects, along with SES at recruitment, covariates, and their two-way interactions (see Methods) 

to test whether SES moderated Cog and NonCog PGS effects on academic achievement. After 

adjusting for SES, the same pattern of relationships was observed, with a relatively stable association 

between the Cog PGS and achievement, and a steeper increase in the NonCog PGS prediction, even 

though all effects were attenuated (Supplementary Table 19). We did not detect significant 

interaction effects between either the Cog or the NonCog PGS with SES (Supplementary Table 19).  

Figure 3D depicts mutually adjusted slopes for the Cog and NonCog PGS prediction against 

academic achievement at different levels of family SES. The figure shows that although higher SES 

corresponded to greater achievement on average, the slope of the association between the Cog and 

NonCog PGS and achievement did not differ across socio-economic strata. Higher PGS, for both 

cognitive and noncognitive skills, corresponded to higher academic achievement, and higher SES 

corresponded to both higher mean PGSs and higher achievement, indicating a correlation rather than 

an interaction between genetic and environmental influences on academic achievement.  

Discussion  

We investigated the contribution of cognitive and noncognitive genetics to academic achievement 

during compulsory education in a UK-based sample. Four complementary findings emerged. First, 

noncognitive skills increasingly predicted academic achievement over the school years, and these 

effects remain substantial even after accounting for cognitive skills. Second, the contribution of 

noncognitive skills to academic achievement is mainly due to common genetic factors, whose 

influence also increases over the school years. For example, the noncognitive polygenic score 

prediction of academic achievement nearly doubles over the school years, while the cognitive 

polygenic score prediction remains relatively stable. Third, the increasingly important role of 
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noncognitive genetics persists even after accounting for family-fixed effects. Fourth, polygenic score 

contributions to academic development did not differ across socio-economic contexts. Together, 

these findings highlight the important role that noncognitive skills play during primary and 

secondary education and suggest that fostering such skills might provide an avenue for successful 

educational strategies and interventions.  

The first set of novel findings about development emerged from twin analyses of the covariance 

between noncognitive traits and academic achievement. First, we found that genetic factors 

accounted for most of the observed correlations between noncognitive skills and academic 

achievement at all developmental stages. Second, both phenotypic and genetic correlations increased 

developmentally, particularly for self-reported measures of noncognitive traits. Third, our twin 

analyses showed that genetic factors accounted for most of the correlations between noncognitive 

skills and academic achievement after accounting for cognitive skills. Finally, this independent 

genetic contribution of noncognitive skills to academic achievement increased developmentally. This 

increase was observed for both education-specific noncognitive skills, where the measures included 

in the general factors changed developmentally, as well as for domain-general self-regulation skills, 

for which the same measures were collected at all developmental stages. Therefore, the observed 

developmental increase in phenotypic and genetic associations independent of cognitive skills is 

unlikely to be an artefact of inconsistencies in measurement but rather reflects the increasingly 

important role of noncognitive skills across compulsory education. 

A further aim of the current study was to better understand what was captured by the noncognitive 

PGS constructed using GWAS-by-subtraction20, particularly in relation to what other skills beyond 

cognitive ability propel students down different educational trajectories. Given the link between 

socioeconomic status and academic achievement45 we were specifically interested in whether the 

noncognitive PGS also indexed socio-economic-related factors. To this end, we extended the 

GWAS-by-subtraction model in two directions. First, with the aim of making a more refined 

cognitive factor, we added summary statistics from several other GWASs of fluid intelligence. 

Second, we included GWASs of other traits known to associate with achievement beyond cognitive 

abilities, specifically targeting SES-related traits such as income and social deprivation, making the 

noncognitive PGS factor more explicitly socio-economic relevant.  

It should be highlighted that GWAS of SES-relevant measures may be more subject to 

sociodemographic confounds such that estimates of SNP effects will also capture population 

stratification phenomena, such as geographic clustering46. This limitation is particularly relevant for 

the GWAS of social deprivation, as the measure is an area-based score of social inequality. 

Interestingly, the results obtained from this new model paralleled those we obtained when we applied 

the cognitive and noncognitive PGSs from the original GWAS-by-subtraction model, which only 

used educational attainment to define the noncognitive factor. This suggests that the PGS measure of 

noncognitive skills from Demange et al. may have already captured some SES-related effects.  

Importantly, our employment of a within-family comparison helped us to mitigate possible 

confounds associated with uncontrolled population stratification. 

Paralleling our multivariate twin results, we observed that the effects of the prediction from 

noncognitive PGS to academic achievement increased from childhood to adolescence, beyond the 
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effects of the cognitive PGS. A few explanations are possible for this finding. First, this could be 

attributable to gene-environment correlation (rGE), which could be passive, evocative, or active47,48. 

Another explanation could be that PGS become increasingly predictive during development because 

the sample becomes closer in age to the adult samples where GWAS effect sizes were estimated in 

the case of educational attainment and cognitive performance17. However, it is of note that this 

increase in prediction was not observed for the cognitive PGS, for which effects on academic 

achievement were mostly stable developmentally. Moreover, our triangulation of results across 

multiple methods (including phenotypic and twin analyses) adds support to our finding of these 

developmental differences between cognitive and noncognitive genetics.  

We applied a within-sibling design44 to test whether environmental variables that are shared by 

siblings and that potentially confound PGS could explain the observed increase in the predictive 

power of the noncognitive PGS. While the contributions of both PGSs were attenuated within-

family, suggesting a substantial role for environmental confounds shared by family members, an 

increase in the contribution of noncognitive PGS to academic achievement from age 7 to 16 was still 

evident when comparing siblings. In contrast, the within-family contribution of the cognitive PGS 

remained relatively stable. The increase in the noncognitive PGS prediction at the within-family 

level is consistent with transactional processes driven by active or evocative gene-environment 

correlation31,48,49 for noncognitive PGS. As children grow up, they actively evoke or shape their 

environmental experiences based in part on their genetic dispositions, and these experiences in turn 

contribute to their academic development. Our findings suggest that children’s educational 

experiences are increasingly shaped by their propensity towards noncognitive skills. 

To delve deeper into the role of socio-economic factors, we tested whether SES could modify the 

relationship between cognitive and noncognitive PGSs and academic achievement over 

development. While we did not find evidence for interaction effects in this regard, the cognitive and 

noncognitive PGS were conditionally independent in a multivariable model including SES, further 

indicating that the genetics captured by the noncognitive skills factor was at least partly independent 

of SES-related genetic and environmental effects.  

One caveat of these gene-environment interaction analyses is that adjusting for a heritable covariate, 

like SES, can yield biased estimates in multivariable models including PGS50,51. Future work is 

needed to determine whether this is the case, perhaps leveraging results of within-family GWAS to 

construct PGS for ‘direct’ effects within families52. This limitation also pertains to our within-sibling 

PGS analyses, as it might be difficult to separate direct and indirect effects using population-based 

GWAS effects as a starting point53. Follow-up of these analyses employing PGS for direct effects 

obtained from family-based GWAS will shed light on this potential limitation. A further caveat of 

the present work is that, while we investigated genetic effects on noncognitive skills and their link 

with academic achievement across development, we did not investigate stability and change using 

longitudinal models. Future work explicitly investigating developmental change at the phenotypic54, 

genetic29 and genomic41,55 level, for example using latent growth models56, will address further 

developmental questions related to the role of noncognitive skills in academic development. 

To conclude, our study provides an in-depth investigation of the role of noncognitive genetics in 

academic development. Triangulating multiple genetic and genomic methods, we found consistent 
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evidence for the increasingly important role that noncognitive skills play during compulsory 

education. Genetic dispositions towards noncognitive skills become increasingly predictive of 

academic achievement and, by late adolescence, they explain as much variance in achievement as do 

genetic dispositions towards cognitive skills. Results from within-family and developmental analyses 

are consistent with theorized transactional processes of active/evocative gene-environment 

correlation by which, as they grow up, children evoke and actively select academic environments 

that correlate with their genetic disposition towards noncognitive skills47,48. Fostering noncognitive 

skills might provide a successful avenue for educational interventions. 

Methods 

Sample 

Participants are part of the Twins Early Development Study (TEDS), a longitudinal study of twins 

born in England and Wales between 1994 and 1996. The families in TEDS are representative of the 

British population for their cohort in terms of socio-economic distribution, ethnicity and parental 

occupation. Ten thousand families are still actively involved with the TEDS study over twenty years 

after the first data collection wave (see57 for additional information on the TEDS sample). The 

present study includes data collected in TEDS across multiple waves. Specifically, we will analyze 

data collected over five collection waves, when the twins were 4, 7, 9, 12 and 16 years old. The 

sample size differs between collection waves, numbers for all measures included in the study are 

reported in Supplementary Table 1.   

Measures 

Below we provide a brief description of all the measures included in the present study.  Please refer 

to https://www.teds.ac.uk/datadictionary for detailed descriptions of each measure and information 

on the items included in each construct. 

Education-specific noncognitive skills 

At age 9 data on education-specific noncognitive skills were collected from parents, teachers and 

self-reports from the twins. Measures of academic self-perceived ability58, academic interest58 and 

the Classroom Environment Questionnaire (CEQ59) were available from all raters. The CEQ 

included the following subscales rated by parents and twins: (1) CEQ classroom satisfaction scale; 

(2) CEQ educational opportunities scale; (3) CEQ adventures scales, assessing enjoyment of 

learning. Ratings on the CEQ classroom satisfaction scale were also provided by the teachers. 

At age 12 data on education-specific noncognitive skills were collected from parents, teachers, and 

self-reports. The following measures were collected: academic self-perceived ability58, academic 

interest58, the mathematics environment questionnaire60 and the literacy environment questionnaire61. 

The questionnaires asked several questions related to literacy and mathematics, including items such 
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as: Reading is one of my favourite activities; When I read books, I learn a lot; and In school, how 

often do you do maths problems from text books? all rated on a four-point Likert scale.  

At age 16 education-specific noncognitive skills were assessed via self-reports provided by the 

twins. The battery of education-specific noncognitive constructs included the following measures:  

(a) The brief academic self-concept scale included 10 items (adapted from62), such as: I like having 

difficult work to do and I am clever, rated on a 5-point Likert scale.  

(b) School engagement63 includes 5 subscales: teacher-student relations; control and relevance of 

schoolwork; peer support for learning; future aspirations and goals; family support for learning. The 

school engagement scale includes items such as:  I enjoy talking to the teachers at my school, I feel 

like I have a say about what happens to me at school, School is important for achieving my future 

goals, and When I have problems at school, my family/carer(s) are willing to help me, rated on a 4-

point Likert scale.  

(c) Grit was assessed with 8 items from the Short Grit Scale (GRIT-S)64 asking the twins to report on 

their academic perseverance answering questions such as: Setbacks don’t discourage me, and I am a 

hard worker, rated on a 5-point Likert scale.  

(d) Academic ambition65 was measured with 5 items asking participants to rate statements like the 

following on a 5-point Likert scale: I am ambitious and achieving something of lasting importance is 

the highest goal in life.  

(e) Time spent studying mathematics was assessed with 3 items asking participants how much time 

every week they spent in: Regular lessons in mathematics at school, Out-of school-time lessons in 

mathematics, and Study or homework in mathematics by themselves.  

(f) Mathematics self-efficacy66 was measured with 8 items asking students how confident they felt 

about having to perform different mathematics tasks, for example: Calculating how many square 

metres of tiles you need to cover a floor and Understanding graphs presented in newspapers, rated 

on a 4-point Likert scale  

(g) Mathematics interest66 asked participants to respond to 3 questions related to interest in 

mathematics, including: I do mathematics because I enjoy it and I am interested in the things I learn 

in mathematics.  

(h) Curiosity was assessed with 7 items67 asking participants to rate statements such as: When I am 

actively interested in something, it takes a great deal to interrupt me and Everywhere I go, I am 

looking out for new things or experiences on a 7-point Likert scale  
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(i) Attitudes towards school was measured using the PISA attitudes to school measure66 which 

included 4 items such as: School has helped give me confidence to make decisions and School has 

taught me things which could be useful in a job rated on a 4-point Likert scale. 

Self-regulation  

Emotional and behavioral self-regulation was assessed at all ages using the Strengths and Difficulties 

Questionnaire (SDQ)68. Data on domain-general self-regulation skills was collected from parents, 

teachers and self-reported by the twins. The SDQ includes 5 subscales: hyperactivity, conduct 

problems, peer problems, emotional problems, and prosocial behaviour. Composite scores for all 

subscales except prosocial behaviour were reversed so that higher scores indicated higher levels of 

domain-general self-regulation skills. At age 7, domain-general self-regulation skills were rated by 

the parents; at age 9 and 12 by the parents, teachers and self-reported by the twins; and at age 16 

self-reported by the twins.  

Cognitive ability  

At age 7 cognitive ability was measured using four cognitive tests that were administered over the 

telephone by trained research assistants.  Two tests assessed verbal cognitive ability: a 13-item 

Similarity test and 18-item Vocabulary test, both derived from the Wechsler Intelligence Scale for 

Children (WISC-III)69.  Nonverbal cognitive ability was measured using two tests: a 9-item 

Conceptual Groupings Test70, and a 21-item WISC Picture Completion Test69. Verbal and nonverbal 

ability composites were created taking the mean of the standardized test scores within each domain. 

A g composite was derived taking the mean of the two standardized verbal and two standardized 

nonverbal test scores. 

At age 9 cognitive ability was assessed using four cognitive tests that were administered as booklets 

sent to TEDS families by post. Verbal ability was measured using the first 20 items from WISC-III-

PI Words test71 and the first 18 items from WISC-III-PI General Knowledge test71. Nonverbal ability 

was assessed using the Shapes test (CAT3 Figure Classification)72 and the Puzzle test (CAT3 Figure 

Analogies)72. Verbal and nonverbal ability composites were created taking the mean of the 

standardized test scores within each domain. A g composite was derived taking the mean of the two 

standardized verbal and two standardized nonverbal test scores. 

At age 12, cognitive ability was measured using four cognitive tests that were administered online. 

Verbal ability was measured using the full versions of the verbal ability tests administered at age 9: 

the full 30 items from WISC-III-PI Words test71 and 30 items from WISC-III-PI General Knowledge 

test71. Nonverbal ability was measured with the 24-item Pattern test (derived from the Raven’s 

Standard Progressive Matrices)73 and the 30-item Picture Completion test (WISC-III-UK)69. Verbal 

and nonverbal ability composites were created taking the mean of the standardized test scores within 

each domain. A g composite was derived from the mean of the two standardized verbal and two 

standardized nonverbal test scores. 
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At age 16 cognitive ability was assessed using a composite of one verbal and one nonverbal test 

administered online. Verbal ability was assessed using an adaptation of the Mill Hill Vocabulary 

test74, Nonverbal ability was measured using an adapted version of the Raven’s Standard Progressive 

Matrices test73. A g composite was derived taking the mean of the two standardized tests. 

 Academic achievement  

At age 7 academic achievement was measured with standardized teacher reports and consisted of 

standardized mean scores of students’ achievements in English and mathematics, in line with the 

National Curriculum Level.  Performance in English was assessed in four domains: speaking, 

listening, reading, and writing abilities; performance in maths was assessed in three domains: 

applying mathematics, as well as knowledge about numbers, shapes, space and measures. 

At age 9, academic achievement was again assessed using teacher reports. The domains assessed 

were the same for English and mathematics (although on age-appropriate content). In addition, 

performance in science was assessed considering two key domains: scientific enquiry and knowledge 

and understanding of life processes, living things and physical processes. 

At age 12, academic achievement was assessed in the same way as at age 9, with two exceptions.  

Mathematics added a fourth domain, data handling, and science added a third domain, materials and 

their properties. These additions were in line with the changes made to the National Curriculum 

teacher ratings. 

 At age 16, academic achievement was measured using the General Certificate of Secondary 

Education (GCSE) exam scores. The GCSE is the UK nationwide examination usually taken by 16-

year-olds at the end of compulsory secondary education75. Twins’ GCSE scores were obtained via 

mailing examination results forms to the families shortly after completion of the GCSE exams by the 

twins.  For the GCSE, students could choose from a wide range of subjects. In the current analyses 

the mean score of the three compulsory GCSE subjects: English Language and/or English Literature, 

mathematics, and a science composite (a mean score of any of the scientific subjects taken, including 

physics, chemistry, and biology). 

Family socio-economic status 

At first contact, parents of TEDS twins received a questionnaire by post, and were asked to provide 

information about their educational qualifications, employment, and mothers’ age at first birth. A 

socioeconomic status composite was created by standardizing these three variables and calculating 

their mean. The same measures, except for mother’s age at first birth, were used to measure family 

socioeconomic status at age 7. At age 16, data on socioeconomic status were collected using a web 

questionnaire, and a total score was calculated from the standardized mean of 5 items: household 

income, mother’s and father’s highest qualifications, and mother’s and father’s employment status. 
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Genetic data  

Two different genotyping platforms were used because genotyping was undertaken in two separate 

waves, 5 years apart. AffymetrixGeneChip 6.0 SNP arrays were used to genotype 3,665 individuals. 

Additionally, 8,122 individuals (including 3,607 DZ co-twin samples) were genotyped on Illumina 

HumanOmniExpressExome-8v1.2 arrays. Genotypes from a total of 10,346 samples (including 

3,320 DZ twin pairs and 7,026 unrelated individuals) passed quality control, including 3,057 

individuals genotyped on Affymetrix and 7,289 individuals genotyped on Illumina. The final data 

contained 7,363,646 genotyped or well-imputed SNPs. For additional information on the treatment 

of these samples see76.  

Analytic strategies  

Phenotypic analyses: Confirmatory factor analysis, correlations, and regressions 

Confirmatory factor analysis (CFA) was employed to create latent dimensions of noncognitive skills 

and general cognitive ability at all ages. Based on the well-established literature on general cognitive 

ability (g) and previous work in the TEDS sample77, we constructed one factor for g at each 

developmental stage. Each g factor was created by taking the weighted loadings of two verbal and 

two nonverbal tests (see Measures and Supplementary Table 6). CFA was also employed to construct 

dimensions of noncognitive characteristics. Based on previous meta-analytic work on the 

noncognitive characteristics that matter for educational outcomes9,78, we embraced a theoretical 

distinction between education-specific noncognitive characteristics (e.g., motivations, attitudes and 

goals) and broader, more de-contextualized measures of self-regulation (e.g., behavioural and 

emotional regulation), and created separate factors for a) education-specific noncognitive 

characteristics and b) domain-general self-regulation skills separately for ages and raters, including 

all the measures available at each age for each rater (see Supplementary Tables 2 and 3 for factor 

loadings and model fit indices). 

We applied phenotypic correlations to examine the associations between noncognitive skills (both 

observed measures and factors) and general cognitive ability and academic achievement at each age. 

We applied multiple regressions to explore the associations between noncognitive skills and 

academic achievement accounting for general cognitive ability. We applied Benjamini-Hochberg 

correction79 to account for multiple testing.  

Genetic analyses: The twin method 

The twin method allows for the decomposition of individual differences in a trait into genetic and 

environmental sources of variance by capitalizing on the genetic relatedness between monozygotic 

twins (MZ), who share 100% of their genetic makeup, and dizygotic twins (DZ), who share on 

average 50% of the genes that differ between individuals.  The method is further grounded in the 

assumption that both types of twins who are raised in the same family share their rearing 

environments to approximately the same extent 80. By comparing how similar MZ and DZ twins are 

for a given trait (intraclass correlations), it is possible to estimate the relative contribution of genetic 
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factors and environments to variation in that trait. Heritability, the amount of variance in a trait that 

can be attributed to genetic variance (A), can be roughly estimated as double the difference between 

the MZ and DZ twin intraclass correlations80. The ACE model further partitions the variance into 

shared environment (C), which describes the extent to which twins raised in the same family 

resemble each other beyond their shared genetic variance, and non-shared environment (E), which 

describes environmental variance that does not contribute to similarities between twin pairs (and also 

includes measurement error).   

The twin method can be extended to the exploration of the covariance between two or more traits 

(multivariate genetic analysis). Multivariate genetic analysis allows for the decomposition of the 

covariance between multiple traits into genetic and environmental sources of variance, by modelling 

the cross-twin cross-trait covariances. Cross-twin cross-trait covariances describe the association 

between two variables, with twin 1’s score on variable 1 correlated with twin 2’s score on variable 2, 

which are calculated separately for MZ and DZ twins. The examination of shared variance between 

traits can be further extended to test the aetiology of the variance that is common between traits and 

of the residual variance that is specific to individual traits. 

It is possible to apply structural equation modelling to decompose latent factors into A, C and E 

components, applying models such as the common pathway model. The common pathway model is 

a multivariate genetic model in which the variance common to all measures included in the analysis 

can be reduced to a common latent factor, for which the A, C and E components are estimated. As 

well as estimating the aetiology of the common latent factor, the model allows for the estimation of 

the A, C and E components of the residual variance in each measure that is not captured by the latent 

construct81.  

A further multivariate twin method, grounded in SEM is the Cholesky decomposition, which 

examines the genetic and environmental underpinnings of the associations between multiple 

variables or latent factors. The Cholesky approach parses the genetic and environmental variation in 

each trait into that which is accounted for by traits that have been previously entered into the model 

and the variance which is unique to a newly entered trait. In our case the Cholesky decomposition 

partitions the genetic and environmental variance that is common across cognitive, noncognitive and 

achievement measures from the genetic and environmental variance that is common between 

noncognitive skills and achievement, independently of that accounted for by cognitive ability. 

Cholesky decompositions were conducted on latent dimensions of cognitive and noncognitive skills 

and observed variation in academic achievement (see Supplementary Tables 12 and 13). 

Genetic analyses: Genomic structural equation model (SEM) 

Genomic SEM41 is an approach to conduct multivariate genome-wide association (GWA) analyses. 

Based on the principles of SEM widely used in twin analyses and integrated with LD score 

regression82, Genomic SEM jointly analyzes GWA summary statistics for multiple traits to test 

hypotheses about the structure of the genetic covariance between traits. Here we employed Genomic 

SEM to create latent GWAS summary statistics for unmeasured traits based on other traits for which 

GWAS summary statistics exist. Recent work applied a GWAS-by-subtraction approach20 leveraging 
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GWA studies of educational attainment (EA17) and cognitive performance (CP17,83) to obtain a GWA 

of noncognitive skills. The GWAS-by-subtraction approach estimates, for each single nucleotide 

polymorphism (SNP), an effect on EA that is independent of that SNP’s effect on CP (therefore 

indexing residual noncognitive SNP effects). The model regresses the EA and CP summary statistics 

on two latent variables, Cog and NonCog. EA and CP are both regressed on the Cog latent variable 

and only EA is regressed on the NonCog latent factor. The Cog and NonCog factors are specified to 

be uncorrelated and residual covariances across factor indicators are set to zero. Cog and NonCog are 

then regressed on each SNP, iterating across all SNPs in the genome. 

We extended the GWAS-by-subtraction with the aim of obtaining potentially more fine-grained 

cognitive and noncognitive factors. Specifically, the model was extended as follows: Loading 

exclusively on the Cog factor: five UK Biobank cognitive traits (Cognitive Performance83, Symbol 

Digit Substitution, Memory, Trail Making Test and Reaction Time)42. Loading on both the Cog and 

Noncog factors: educational attainment17, Townsend deprivation index (http://www.nealelab.is/uk-

biobank/), and income43. An additional difference from the original GWAS-by-subtraction is that we 

let residual variances vary freely (i.e., we did not constrain them to 0; see Figure 3A and 

Supplementary Table 14).  

Genetic analyses: Construction of polygenic scores (PGS) and PGS analyses  

Polygenic scores (PGS) were calculated as the weighted sums of each individual’s genotype across 

all single nucleotides polymorphisms (SNPs), using LDpred weights84. LDpred is a bayesian 

shrinkage method that corrects for local linkage disequilibrium (LD; i.e. correlations between SNPs) 

using information from a reference panel (we used the target sample (TEDS) limited to unrelated 

individuals) and a prior for the genetic architecture of the trait. We constructed PGS using an 

infinitesimal prior, that is assuming that all SNPs are involved in the genetic architecture of the trait, 

as this has been found to perform well with highly polygenic traits such as educational attainment, 

and in line with the approach adopted by Demange et al.20. In regression analyses, following from 

Demange et al.20, both the Cog and NonCog PGSs were included in multiple regressions together 

with the following covariates: age, sex, the first 10 principal components of ancestry, and genotyping 

chip and batch. We accounted for non-independence of observation using generalized estimating 

equation (GEE).  

Genetic analyses: Within and between family analyses  

We conducted within-sibling analyses using DZ twins to estimate family-fixed effects of both cog 

and non-cog PGS on achievement across development44. A mixed model was fit to the data including 

a random intercept to adjust for family clustering, and two family-fixed effects in addition to 

covariates (age, sex, the first 10 principal components of ancestry, and genotyping chip and batch): a 

between-family effect indexed by the mean family PGS (i.e., the average of the DZ twins’ PGS 

within a family), and a within-family effect, indexed by the difference between each twin’s PGS 

from the family mean PGS.  Analyses were repeated with the PGS from Demange et al.20, as 

sensitivity analyses. 
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Genetic analyses: Gene x Environment interaction analyses  

We conducted gene-environment (GxE) interaction analyses to test whether SES moderated the 

effects of the cognitive and noncognitive PGS prediction on academic achievement over 

development. We fit a linear mixed model including Cog and NonCog PGS (the extensions), SES 

and their two-way interactions after adjusting for covariates (as above) and two-way interactions 

between predictors and covariates, plus a random intercept to adjust for family clustering. We 

adjusted for multiple testing using the Benjamini–Hochberg false discovery rate (FDR) method79 for 

all PGS analyses, at an alpha level of .05. 
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